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TECHNICAL NOTE 3768

ON POSSIBLE SIMITARITY SOLUTIONS FOR THREE-DIMENSIONAL
INCOMPRESSTBLE LAMINAR BOUNDARY LAYERS
I - SIMILARTTY WITH RESPECT TO STATIONARY RECTANGULAR COORDINATES

By Arthur G. Hansen and Howerd Z. Herzig

SUMMARY

Solutions of mainstream flow patterns for all possible incompres-
sible laminar-boundary-layer flows having classical similarity with
respect to rectangular coordinate systems are derived. These solutions,
which apply to a wide range of flows, are summarized in table form.

INTRODUCTION

Turbomachine boundary layers are quite generally turbulent except
perhaps in local regions. As illustrated by the secondary-flow behavior
described in references 1 to 3, these boundary-lesyer flows are three-
dimensional as well. Mathematically, the nonlinear partial differential
equations that describe this turbulent three-dimensional boundary-layer
flow are all but intractable. Nevertheless, it is important, for turbo-
machine design procedures, to obtain theoretical solutions of the
boundary-lsyer equations. In one much-used approach to this problem, by
assuming two-dimensional laminar-boundary-layer flows, the equations are
greatly simplified and solutions can be obtained. Actually, meny useful
applications of this two-dimensional leminar-boundary-layer flow theory
have been made for estimating losses in turbomachines for design purposes.
Often, however, this simplificetion is not physically accepteble. For
example, when, in order to develop increased power output from compact
engines, the flow velocities and mass-flow rates are increased, the
boundary-layer secondary-flow effects likewise are increased. The
boundary-layer accumlations and blade-end-region losses associated with
the secondary flows soon constitute a substantial portion of the turbo-
machine losses. Unfortunately, these secondary-flow phenomena cannot be
explained by extensions of the two-dimensional boundary-layer theory.

In great measure, future progress in turbomachine design depends upon
understanding and accounting for these secondary flows. As s consequence,
the importance of understanding the three-dimensional turbulent-boundary-
layer behavior has led to many experimental and theoretical Investiga-
tions in recent years.
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Although simplifying the boundary-layer equations by two-
dimensionalizing them appears unteneble for high-output engines, one
most important result of the experimental investigations of references
1 %o 3 is that laminar-boundary-leyer behavior can usefully provide
qualitative information concerning the turbulent-boundary-layer behavior.
From a theoretical viewpoint, the importance of this observation can
hardly be exaggerated. For the three-dimensional leminar-boundary-layer
flows, the nonlinear partial differential equations are merely formideble;
for the turbulent case the existence of turbulent fluctuation motions
makes the determination of solutions much more complicated. The study
of three-dimensional laminar-boundary-layer flows may, therefore, yield
important information for the turbomechine designer. In addition, it is
well to recognize that the external-flow wing-boundary-layer problem for
high-altitude flight is also essentially a three-~dimensional leminar-
boundery-layer (secondary-flow) problem. (The existence of a limiting
cross—-channel-flow streamline depicted in references 1 and 2 eliminates
consideration of a nonviscous-flow theory, at least in regions where it
is reasonsble to expect thin boundary 1ayers.)

Consequently, theoretical investigations of three-dimensional
laminar-boundary-layer flows over a surface having a leading edge have
been made (refs. 4 to 8, e.g.). Two types of solutions are obtained:
approximate solutions (perturbation method) for general mainstream flows
confined to regions of small turning (refs. 4 and 7) and exact similarity
solutions (for boundary-layer flows having affine velocity profiles) for
restricted types of mainstream flows but with no restriction on turning
érefs. 5, 6, and 8). The most general of these similarity solutions

ref. 8) is applicable for quite arbitrary maein-flow streamline paths,
provided the axial velocity component is constant (that is, constant
static pressure axially) and the main-flow streamlines are all translates
(no variation of streamline shapes in the tengential direction).

The present investigation seeks to determine what further extensions
of the similarity solutions are possible. New similarity parameters 1
are defined corresponding to mainstream flows not previously considered
that ensble the boundary-layer equations to be reduced to ordinery dif-
ferential equations in terms of functions of these parameters. (Symbols
are defined in appendix A.) These 1's are found as a result of a
systematic analysis using group theoretic approaches ("search for sym-
metric solutions™ and "inverse"™ method, ref. 9) described in appendix B
of this report. The evaluation of the functions of 1 and the deter-
mination of the corresponding three-dimensional boundary-layer flow
peths remaln as problems of numerical analysis which are not considered
here. Thus, while the integrations of the equations are not carried out,
the similarity solution may be considered essentially complete for
present purposes upon reduction of the boundary-layer equations to ordi-
nery differential equations.
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Solutions obtained include cases of accelerating or decelerating
main flows for quite general streamline paths, not confined to flow
fields of streamline trenslates. These solutions are summerized in
table I, which includes the mainstream velocity components, the gen-
eralized similarity parameter, and the final set of ordinary differ-
entiel equations for each family of mainstream flows.

Similarity solutions obtained in previous investigetions (refs. 4

to 8 and 10 to 15) are likewise cited in the table to show their rela-
tion to the solutions obtained in the present investigation.

SIMITARTTY SOLUTIONS FOR GENERALIZED SIMILARITY PARAMETER 1)
Similarity with Respect to Rectangular Coordinates

The equations .describing the steady incompressible thin-laminar-
boundary-layer flow over a flat or slightly curved surface with coordi-
nate axis oriented as shown in this sketch

fy
v,v

gv i

= \ £
Leading edge of plate \

mey be written




4 ’ NACA TN 3768

u%+v%+w%-v§%=ug‘%+vg—g+wg§ (1a)
ugl;+vg1—yf-+wg—‘-z’-v§g-=Ug—g-+V%¥+Wg (1v)
ou , OV , ow (1c)

gf+gy—_+§z-=0
The boundary conditions are
u=v=w=0 for y=0 (at surface)

limu =70 limw=W
y‘-)g y-)@

It is known from the results of references 4 to 8 that solutlons involv-
ing similerity parameters 1 have been cbtained for the incompressible
three-dimensional laminar-~boundsry-layer development on & nearly flat
surface with a leading edge for certain restricted main flows. The pur-
pose of the present investigation wae to try to f£ind solutions for much
more general flows than had been obtained heretofore by use of more
generalized similarity parameters 1. As in sppendix B and references

4 to 8, the dimensionless velocity components u/U and w/W are defined
in terms of functions F(n) and G(n), respectively, where 1 = 1(X,¥,z).
The continmuity equation (1lc) may then be integrated, solving for v; and
equations (la) and (1b) may be transformed (by substitution) to the new
coordinates, x, z, and 7. The approach used herein is to determine the
conditions under which the transformed equations (la) and (1b) become
ordinary differential equations in F(n) and G(n), which can then be
integrated numerically. For the purposes of this report, the similarity
solutions will be considered completed when the defining equations have
been reduced to ordinary differential equations. The actual numerical
integrations will not be performed here.

Generalized Similarity Parameter 7

When the process outlined gbove is attempted, several practical
restrictions appear at once. Unless the similarity parameter 1n(x,y,z)
has y separeble, that is,

1 = £(y)e(x,z)

the transformed equetions are inordinstely complicated. Furthermore, in
order to be able to integrate the contimuity equation (lc) readily, 3
mst in addition be linear in y. Thus, 1 is chosen as

200s
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n = —% g(x,z) (2)

and the integration can then be carried through. This definition of 1
is not as restrictive as it first appears, because any similarity param-

eter 17* =1*(x,y,2) can be used for which a functional relation can be
found such that

£(1*) = 1 = L g(x,2)

e

The functional relations of F and G to n¥ are determined by

F [£(n*)]
c[2(n*)]

F

F(n)

G(n)‘

For an example, one could choose

T* = T A/xET

(suggested in appendix B by the similitude tra.nsformation) . The
transformation

G

()T = q = y(F2T)Y 2

determines the corresponding parameter 1 linear in y for use in the
integrations.

Thus any solutions obtained in the present investigation are clas-
sical similarity solutions in the sense that, like all previous solutions
involving a similarity parameter, the parameter is linear in y.

Functions F(3) and G(n) and Boundary Conditions

For flows over a nearly flat surface with thin boundary layers such
as are belng considered here, U and W are to be functions of x and
z only, U =U(x,2), W =W(x,2).

As indicated earlier; it is assumed that the velocity components
u end Ww ere expressible as

u = U(x,z) F'(n) (42)

and
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v =TW(x,z) G¢'(n) (4b)

The stipulation that u and w vanish on the bounding surface and ap-
proach the meinstream velocity at great distances from the boundary re-
quires that

F:(0) = G*(0) =

lim F1(n) = 1
y-)m

lim G'(n) = 1
y'-)w

The form of the component v can now be determined from the con-
tinuity equation. Substitution of equations (4a) and (4b) into equation
(1c) yields

a——F'+UF"§+£-G'+WG“§-2~+%;-=O (s)

Equetion (5) can now be solved for v using equation (2), and the re-
sulting solution is given by

-%(%F+%§G)+U§§-;(TIF' -F)+W31§-;(11G' - G) + £(x,2)
(4c)

For v +to vanish on the bounding surface, 1t can be required without
loss of generality that F(0) = G(0) = O and that £(x,z) = 0. (Appen-
dix C contains & discussion of the necessary and sufficient boundary
conditions on F and G.)

Ordinary Differential Equations
Substituting equations (2) and (4) into equations (la) and (1b)

followed by simplification then gives the following two differentlal
equetions in F(n) and G(q):

gg(F'z - FF" - 1) +Wa—%n-—U(G'F‘ - 1) - ‘z’(GF") +

2 1 2 3
a:a.:g (F12?>+Wa%:g (2)_ng." —0 (6)

2009



5002

NACA TN 3768 7

g%(G'Z-GG“—l)+U§—%—;—E(F'G' - 1) -%2(F")+

2 " 2 n
Wa%:g (2)+Ua%-;8 (2>-32G'"=0 (7)

As previously stated, the final goal of the similarity transformations
is to convert the partial differential equations (1) into ordinary dif-
ferential equations in F, G, and their derivetives only. Whether or
not equations (6) and (7) become ordinary differentisl equations, how-
ever, will ultimately depend upon the nature of U, W, and g2, as these
quantities appear in the coefficients of all terms involving F, G, and
their derivatives. The necessary requirement for retaining only terms
in F, G, end their derivatives in equations (6) and (7) is that the non-
constant coefficients of the various terms be proportionel. If such
proportionality exists, the coefficients can be divided out of the equa-
tions, and a system of ordinary differentisl equations in 1 will re-
mein. The condition for obtaining ordinary differential equations would
then be equivalent to the following s¥stem of partial differential equa-
tions for the functions U, W, and

ou d1nvU OW d 1n g2 d 1n g2 d1ln W
(8)

vhere a; #0 for i =1, .. ., 6. The solutions of equation (8)

describe all possible mainstream flows of the type U = U(x,z), W = W(x,z)
for which solutions of the corresponding three-dimensional boundary-layer
equetions could be obtained by the ususl (i.e., linear in y) ‘type of
similarity transformetion in rectangular coordinates.

In the following section, certain consequences of requiring propor-
tionality between the coefficients in equations (6) and (7) are investi-
gated. Whenever such proportionality between two coefficients is assumed,
it is referred to as an "ordinary-differential-equation condition" and is
abbreviated "o.d.e. condition." (The o.d.e. conditions for the incompres-
sible two-dimensional boundary-layer flows are discussed in refs. 15 to
17. 'The o.d.e. conditions for the compressible two-dimensional boundary-
layer flows are discussed in refs. 18 to 20 vwhere systems of equations
in two similarity parameters are obtained which closely parallel eqgs.

(6) and (7) of the present investigation.)

Solutions for U, W, and g2 depend upon the o.d.e. conditions and
the system of differential equations in these quantities which results.
However, the o.d.e. conditions in turn mey depend upon certain basic
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assumptions regarding the nature of U, W, and g2. For example, if it
is assumed initially that U = U(x), the coefficient W 3_%13_11 will not

appear in an o.d.e. condition. Imn general, it will be necessary to meke
such Initial essumptions gbout the form of at least one of the unknown
functions before a unique set of o.d.e. conditions can be determined.

The calculation of all functlions can be carried out in a stralght-
forwaerd manner by meking en initisel assumption on the form of U or W,
by setting up the o.d.e. conditions, and by solving the corresponding
differential equations. The cases where it is assumed that U = U(x,z)
or W = W(x,z) are more complicated than cases resulting from other pos-
sible assumptions on the nature of U or W because a larger number of
o.d.e. conditions result from equation (8) (if for no other reason).

As an example of how calculation of the functions is actually carried
out, the most complicated case, the case of initially assuming U = U(x,z),

W = W(x,z), and g # 0, is presented in sppendix D.

RESULTS AND DISCUSSION

Meainstream Configurations

As & result of the enelysis ebove, it can be shown that four famililes

of solutions to equation (8) are obtained corresponding to

U = mel¥; W = aetX
U = mxP; W = px¥
(9)
U = melXzT-1; W = ael¥zT
U = mxRzT-1; W = px-lgr

(g2 1is proportional to OU/dx in all cases). It is interesting to note
the similarity between these results and the resulis obtained for the
two-dimensional case in reference 15 (pp. 116-120). For this case, the
forms for U(x) (W is identically zero) are shown to be

U = cx

and

U = cePX
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For convenience, the four basic solutions along with five other
forms (which, it turns out, correspond to the four basic forms under
rotation of the coordinate axes) are presented in table I. Table I,
which includes within its organization all the possible solutions for
mainstream flows having classical similarity with respect t0 rectangular
coordinates, for U = U(x,z) and W = W(x,z), is discussed in the follow-

ing paragraphs. P

U and W. - U and W, the velocity components-of “the mainstream
in the x and 2z directions, respectively, are listed first in the
teble.

For all except case VI (obtained from case IV by rotation), the
chart indicates U and W are representaeble by (a) powers of linear
functions in x or 2z individually, (b) exponential functions in x
or z alone, or (c) the products of such functions. In case VI, U and
W take the forms of powers of linear combinations of x and 2z result-
ing in mixed polynomials In x and 2z. It masy be observed that great
freedom of choice of U and W velocity components can be obtained by
assigning different values to the available constants.

Projectior of mainstream on surface. - The equation for the projec-
tion of the mainstream on the surface may be obtained by integrating
dz/ dx = W/U. For flows nearly parallel to the surface, this projection
approximates the actual main-flow streamline path. When the constants
are chosen such that straight mainstream flows result (elways true for
cases IIT and VI), there can be no boundary-layer crossflow relative to
the mainstream. For such flows, F = G and equations (6) amnd (7) are
identical. It mey be observed that, except for solutions cited under
case IV and the stagnetion solution of reference 10, only solutions hav-
ing straight streamlines (in the x-z plane) have been completed.

Irrotationality. - This listing indicates choices of constants for
which the mainstream component of vortlicity normal to the surface
(3U/dz - OW/dx) is zero. For the flows considered here, only this com-
ponent of vorticity cen be much different from zero, in any event.
Therefore, specifying JdU/dz - dW/dx = O, as is done for the listing of
irrotationality, actually serves to set the conditions for nearly irro-
tational main flow.

Irrotationality and two-dimensional continuity. - The flows repre-
sented by cases III and VI are straight flows. Obviously these flows

can be irrotational and have two-dimepsional continuity (gg + g—g— = 0)
only for the case of constant velocity. The combined conditions would
require straight constant-speed flows for cases I, II, IV, V, VII, and
VIII as well. Only case IX can satisfy both irrotationality and two-
dimensional continuity for nonstraight flow paths, when n =1, r =1,
end m = - p. The main-flow streamline paths here are hyperbolic. There
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are, however, difficulties in interpretation of the significance of case
IX flows and their associsted boundary layers which will be discussed
later.

Boundary Laa.rer

Similarity parsmeter 1. - The so-called similarity parameter de-

fined as 17'=y g(x,2)/4/V provides information concerning the physical
dimensions of the boundaery leyer. At the surface 7 =0, and 17—« as
the boundary layer merges into the mainstresm. However, some finite
value of 7 = 7y serves as a practical outer limit to the boundary layer
(refs. 4 to 8). In terms of physical lengths, the boundary-layer thick-
ness at any point is the height y at which the value of 17 reaches

gpproximately 1y. From Yy = —\ﬁ' 1]/ g = 'qo»\/v_ /g at the outer edge of the

boundary leyer, it can be seen that the boundary-layer thickmess is in-
versely proportional to the magnitude of g at any point on a surface.

Thus, in case IIL, for exemple, for n and c positive integers,
the boundery layer becomes progressively thimner with increasing x and
2z because g(x,z) becomes progressively larger.

g(x,2z) constant. - When g 1is constant, the boundary-layer thick-
ness does not vary over the surface. This corresponds, for example, to
the stagnation-point flows (refs. 11 and 15).

Reference 15 notes that in the two-dimensional stagnation-point
flow with the constant boundary-layer thickness (g consta.nt) an exact
solution for the Navier-Stokes equations is obtained where U = ax and
V = ay, for constant a. It is interesting to mnote that the three-
dimensional stagnation-point flow of reference 10 (case IX) with constant
g likewise is an exact similarity solution for the three-dimensional
Navier-Stokes equations with U = ax, W=1cz, V = - y(a + ¢), gz = b, and
M=y /v. For this case, however, the Navier-Stokes equations actually
reduce to the boundaery-layer equations without casting out terms because
of physical considerations, such as very thin boundary layers, and so
forth. ,

Leading edge. - The problem of relating the mathematical solutions
to physical reality is intricately involved with the nature of 1 and
g(x,2z). Usually the boundary leyer must be considered as "heginning”
somewhere in a real flow at a leading edge. At the leading edge the
boundary layer has zero thickness and develops under the main flow along
the surface. A line on the surface slong which 17 takes on very large
values (because g(x,z)~>=) may be considered such a leading edge. Along
such a line the boundary layer has zero thickness being inversely pro-
portional to g(x,z). Because lim F' =1im G' =1, thenu=TUF' =T

_n—nn 'n-)eo
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and w = WG' = W and the boundary-layer velocity components merge smooth-
ly into the corresponding mainstream components. An example occurs in
case IV with n = O along the line x = O on the surface. This, of
course, is the case treated in reference 8 as well as elsewhere.

There are situations where the mainstream velocity components are
zero along a line or along an entire plane normal to the surface. It
is readily seen that the boundary-layer velocity components are also )
zero matching the mainstream. If cases of g constant are not included
for the moment, inspection of the chart reveals that either .g(x,z) like-
wise becomes zero (case IV, n>1 along the line x = 0) and so the
"boundary layer" is infinitely thick along such & line or g(x,z) becomes
very large and the boundary layer begins at the line (case VI, n = 1/2
along the line ax + cz = 0). The situation where g(x,z) =0 along a
line is typical of this type of accelerated flows with a boundary layer
becoming progressively thinner along the surface. In such cases, the
simplest thing to do is to confine the discussion of the flows to such
regions where the requirement of thin boundary layers is satisfied. The
correspondence In these cases between the mathemetical solutions in the
thin-boundary-layer region and physical reality can be properly deter-
mined only by experiment. This, however, is equally true for flows with
satisfactorily defined leading edges.

When g is constant as in the stagnation~point flows discussed
previously, again no leading edge providing a "beginning"” place for the
boundary layer cen be defined. Likewise, the physical realism of a
solution is questionable when the "leading edge" is &t x or z = =
when the velocities at an otherwise well-defined leading edge (1 = =)
take on infinite values. Case IV wvhen n =0, U=1Up, and 7=+« as
x-+0 presents a typical case of flow over a surface with a leading
edge. When r<0 however, in this case (refs. 7-and 15, e.g.) the
tangential component W +takes on infinite values along the leading

edge.

or

Ordinary Differential Equations

The actual numericel solutions of the ordinary differential equa-
tions are beyond the scope of the present investigation. Numerous ex-
amples have been calculated elsewhere for particular values of the free
constants in the equetions. Many of these calculations are indicated in
the listing "References and comments" associated with each case. While
the existence of a solution and its calculation must remain to be deter-
mined individually for each case in genersl, certain remarks can be made
here concerning particular situations.

Separation of F and G. - Numerical solutions will be considerably
easier in those cases for which only one of the parameters, F or G, and
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its derivatives, eppear in one of the two equations. The listing "Sepa-
ration of F and G" enumerates conditions where this will cccur. Under
these conditions the ordinary differential equations reduce to the forms
of cases I and V.

In case I, equation (6) is a Falkner-Skan equation (ref. 13) as is
equation (7) in case V. In all cases, for choices of the constants that
effect separation of F and G in one of the equations (conditions
which are most likely to be useful for purposes of computation) the nu-~
mericel solutions for the equations in F alone or G alone are already
known (refs. 14 esnd 15). Likewise the numerical solutions for equetion
(6) (cases IV and VI) and equation (7) (case IIL) are known.

Although it is not apperent in the teble, if a = 0 in cases I,
IITI, and VII, or p = O in the remaining cases, then w = 0 and equa-
tion (1b) and, hence, equation (7) disappear. Under these conditions, ex-
cept in cases IT and V (which are simply rotations of cases I and Iv, re-
spectively), equation (6) becomes the Falkner-Skan two~-dimensional flow
equation for which the complete solution is known (ref. 13). Similarly,
whenever m = 0, u = 0, equations (1a) and (6) disappesr, and equa-
tion (7) becomes the Falkner-Skan equation except in cases I and Iv.

Boundary conditions not achieveble. - Should the ordinary differ-
ential equations reduce to the form F™ =0 (or G"' =0) in any case,
the solution is

F =Ikn? + kon + kg

However, the boundary condition 1im F'(7) = 1 cannot be achieved. The
M
occurrence of such forms of the equations is listed as "Boundary condi-
tions not achievable.” The requirement that F* and G! approach their
limiting values asymptotically as 17 -+« restricts somewhet the choices
of the constants as well (ref. 19). For example, when F' is to ap-
proach its limit 1 from below, the relations must be such that the cur-
vature of the F*' curve, which depends upon F™ , must be negative.

That is, from equation (6)
™ = " (F,F',F",G,G')<O (10)

The practical analysis is somewhat simplified for conditions when separa-
tion of the variables occurs. Then, F' 1is the Falkner-Skan function.

F, F', and F" are positive, and checks can be made readily during the
numerical calculation procedures for the appropriateness of the sign of
e,

200y
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Similar statements can be made for the restrictions on the constants
required for correct valiies of G" and for conditions when the functions
approach the limit 1 from above.

Linearity in u or w. ~ Under conditions for which there is line-~
arity of equations (1) in u or w, that is, du/ox = 0 or Jw/dz = 0,
an extension of the solution beyond strict similarity of the velocity
component with respect to the corresponding x or 2z coordinate can be
mede. Reference 8 under case VII makes use of such linearity with
respect to w to obtain solutions for gquite general streamline shapes.
In order to simplify the computations, U = Uj, (the case when n = 0) was

chosen in reference 8, so that F becomes the already well-tebulated
Blasius parameter F, (ref. 15) leaving only the parameter G +to be
computed.

CONCLUDING REMARKS

Solutions for meinstream U and W <flow components for all pos-
sible boundary-layer flows having classical similarity (having affine
velocity profiles) with respect to rectangular~coordinate systems are
obtained in an orderly fashion. These solutions, which apply to a wide
range of flows, are summarized in teble I. Careful attention should be
pald to certain practical consideretions.

The final solutions for the boundary-layer velocity components have
not been carried out. The actual numerical solutions for the ordinary
differential equations derived here are considered beyond the scope of
this investigation. They belong more properly to a program involving
the use of high-speed computing machinery.

It is important to note that there is really no case described for
such simple configurations as flows through a row of stator blades with
appreciable turning, irrotationality, and very near two-dimensionality
of the mainstream. The cases for flows with a satisfactorily defined
leading edge include but a portion of the totality of flows described.
Nevertheless, physically, the beginnings of a boundary-layer development
would reasonsbly seem to be most important. Except for that described
in reference 8, there is little experimentel verificaetion available for
any three-dimensional similarity solutions and none for most solutions
indicated in teble I.

On the positive side, there are obviously conditions for which the
solutions presented ensble reasongble gpproximations to be calculated
for three-dimensional laminar-boundary-layer behavior (see ref. 8). More
importent, however, if no case can be found in teble I to serve as a
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reasonable approximation for a particular flow problem, then iri all
likelihood some approach other than the similarity solutions in rectan-

gular coordinates must be sought.

Lewis Flight Propulsion La.:oora.tory'
National Advisory Committee for Aeronautics
Cleveland, Ohio, June 6, 1956

200S
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APPENDIX A

SYMBOLS '
a,b,c,d constants
hig arbitrary function
F,F(n),F function of similarity parameter; u = UF*(q)
G,G(n),G function of similarity parameter, w = WG'(n)
8,8(x,2) function of coordinates, x and z

h,k,m,n,

p,T constants

U,Y',W mainstream velocity c01;1ponents in x,y,z directions,

lij 3 V,ﬁ respectively

u,v,w boundary-layer velocity components in x,y,i; directions,

u,v,% respectively -

;:%:.; rectangular coordlinates

o constant

1 similarity (space) variable, 7 = -,\_/'X-l;- g(x,z)

Mo value of 17 which defines practical outer limit of boundary
layer

7* similarity variable, 7* = 1%(x,y,z)

v coefficient of kinematic viscosity

Subscripts:

0 constant

;Tl’ 2’. . index numbers

Superscripts:

Primes denote differentiation
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APPENDIX B

SEARCH FOR SOLUTIONS
Approach to the Problem

One purpose of the present investigation was to develop a logical
systematlic method for obtaining more general solutions for three-
dimensional incompressible thin-boundary-layer flows having affine dimen-
sionless velocity profiles (so-called similarity solutions) then hereto-
fore available. The utility of inspectional anslysis as a method for
obtaining such solutions to the partial differential. equations of fluid
flow 1s discussed in chapter IV of reference 9. The basis of the method
is the axiom (obtained from group theory) thet, if the hypotheses of a
theory are invariant under a group of transformetions, then so are its
conclusions. Suppose a group of transformations can be found that leaves
the form of a system of partial differential equations invariant. The
method, called the "search for symmetric solutions", as applied to
boundary-layer theory involves finding combinations of the reference
coordinates that are likewise invariant under the group. Of even greater
significance to the present investigation is the concept of an "inverse
method" (ref. 9, p. 140), which states thet, given a particular solution
with certain properties, it may be possible to f£ind additional solutions
by a priori postulation of those properties. The procedures for applying
these two methods to boundary-layer problems are described in detail
later. It appears advisable first to esteblish the reasonableness of
anticlpating that the application of these methods can lead to solutions

of the boundary-layer equations.

2009

Reference 9 applies the "search for symmetric solutions" to the two-
dimensional laminar-boundary-layer equations in rectangular coordinates
and is eble to derive a systematic, loglcal development of the Blasius
solution in terms of a similarity parameter 7 = y/p/X. Furthermore, it
is known from the results of references 4 to 8 that solutions involving
such similarity parameters have been obtained for the incompressible
three-dimensional leminar-boundary-layer development on & nearly flat
surface with a leading edge for certain restricted main flows. Thus it
seems reasonable to attempt to apply the method of "search for symmetric
solutions" and the "inverse" method in order to find three-dimensionsal
boundary-layer solutions for more general mein flows.

The procedure for this investigation was to use the "search for
symmetric solutions" in an effort (1) to find some solutions for the
incompressible three-dimensionsl laminsr-boundary-layer flow over a sur-
face in a logical, systematic manner, (2) to study the properties of these
solutions, and (3), if possible, to invoke the inverse method to find
other related solutions. In this fashion, it was intended to try to
find solutions for much more general flows than had been obtained

heretofore.
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Following reference 9, under transformstions of similitude (changes
of scale),

X - ccl'i, Y a5, z > a,SE
u = a,d, v > agv, W > agW (B1)

U-)aqﬁ, V-»a,s‘\.-f, W-)a,gﬁ

the system of equations (1) is invariant when, for example,

a2 _ 2 A
% =dz S0y =
a5 =og =g =g 5 (82)
(In4==d:6=u.7=a,9=l J

where the last constants were chosen equal to 1 for convenience. The
invariance of equations (1) under this transformation may be verified by
direct substitution of equations (Bl) and (B2) into equations {1).

As mentioned previously, the first step in the search for symmetric
solutions is finding combinations 17 of the reference coordinates that
are likewise invariant under the transformation of similitude using equa-
tions (Bl) and (B2). Several such combinations suggest themselves at

once: 1 ~ y/AX + 2, ya/xl2 0L, yn/ﬂ/F + z8, y~2,/xPz0-T  and others.

Substitution from equations (Bl) and (B2) verifies the invariance. The
solutions are to be obtained by expressing dimensionless u and w as
functions of 17 under conditions that will ensble these functions to be
evaluated. By comparison with reference 9, it can be shown that solutions
which mey be obtained in this fashion will be similarity-type solutions
with more generalized space varisbles 1 than considered heretofore
(refs. 5, 6, and 8). .

Application of Method

Specifying the dimensionless velocity components u/U = F'(q),
w/W = G'(n) as in equations (4a) and (4b) of the text and defining

N = y/ ,\/x + 2z, for an example, it is found that the transformed boundary-
layer equations reduce to ordinary differential equations in F(q),
G(n), end their derivatives for

U=m
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W=p
V=0

This is the case of a family of straight main flows (actuslly a
rotated Blasius flow) with streamline projections in the x-z plane de-

scribed by z = (p/m) x + zy.

Similarly, as suggested earlier, when

1 = sy

the transformed equations reduce to ordinary differential equations for
U = m(x)®l(z)-2-1 m#£o0

W = p(x)¥(z)-2 p#£0

Here is the family of mainstream flows with projected streamlines in the
x-z plane described by 2T = zyxP.

Thus, preliminary application of the method of "search for symmetric
solutions" using transformstions of similitude has led directly to ob-
talning two new similarity solutions. In order to invoke the inverse
method- and perhaps extend these results, the solutions were studied. As
a result it was found convenient to postulate a priori the property that
the boundary-layer equations can be transformed to equations conteining
functions of a generalized simlilarity parameter 1, and that the trans-
formed equations can be reduced to ordinary differential equations by
determining specific forms U(x,z), W(x,z), and 5. Four families of
solutions are obtained upon application of the inverse method in this in-
vestigation and are listed as nine general cases 1ln table I.

The associated problem of actuelly determining the numerical solu-
tions to these families of differential equations is twofold. There is
first the problem of the existence of such solutions for any particular
case. Ag discussed in the text, values can be chosen for certain free
constants in the equations such that the required boundary conditions
cannot be achieved. Second, there is the fact that, for even moderate
ranges of the constaents that enter the equations as parameters, literally
thousands of essayable integrations are represented in the teble. The
scope and purpose of this investigation is to present the f£flow equations
in such form that thelr applicability to the boundary-layer development
under some particular mainstream configuration will be readily apparent.
The problems of numerical integration for that particular case can then
be under;;aken more sppropriately at that time (as in refs. 4 to 8 and
10 to 15).

2008
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APPENDIX C
BOUNDARY CONDITIONS
The boundary-layer, equations (1) have been transformed using the
definitions
u = UF'(q) (42)
w = Wa'(n) (4b)

and the solution for v is given by equation (4c).

The meinstream flows have then been determined for which the trans-
formed boundary-layer equetions reduce to ordinary differential equations,
involving F(n), G(n), and their derivatives. The boundary conditions on
these functions of 1 must be chosen to correspond to the boundary con-
ditions on u, v, and w in the original partial differential equetions
(1). Corresponding to the four boundary conditions,

u=w=0 for y=0

limu="0U
V>
limw=W
W o

the following four boundary conditions on F and G result from equa-
tions (4a) and (4Db)

F1(0) =@*(0) =
1lim F' = 1im G' = 1
N> o -+

The remaining boundery condition on equations (1), v=0 far y =0,
requires that (see eq. (4c))

W UJdlng )F(O) LM _HolneNegy & p(x,2)  (cL)

ox ~ 2 ox oz - 2 oz

Substituting equations (4) into equations (1la) and (1b) with #£(x,z)
defined as in (Cl) yields

e e ——— . .
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% {th - [F - P(O)]F" - 1} + Ea%:_‘_’ (G'F* - 1) - g_‘z‘l F'[G - G(0)] +

g ing? B g _ F(o)]+."la_.3:‘;_§EF 6 - 6(0)] - g2F™= 0

T ox 2 oz
(c2)
M fa? ¢ [a - &(0)] - 1+ +RLW (g 1) - T - #(0)+
W_a_lgzs_zc* [¢ - 6(0)] +U§—l-g—§—G [F - F(O)] g%a" =0
(c3)

If the substitution is now made,
F = F + F(0)
G =G+ ¢(0)

The sbove equations reduce to the form given in equations (6) and (7)
with F and G replaced by F end G, respectively. Provided that the
coefficients of (C2) and (C3) have been made proportional, the solutions
for equations (C2) and (C3) are uniquely determined by solutions of equa-
tions (6) and (7) in F and @ with_the boundary conditions

#(0) = G(0) = F'(0) = §'(0) =0; Lim F* = 1lim § = 1. Furthermore,
N N> w
u = UF' = UF (c4)
W = WG' = WG (c5)

L r w01+ Y e - a(0)1} + Uoe™ for - [¥ - woN}+
-1 )

w2 (oo - [e - 0} (ce)

- gg » )+H%%:E(qin ) +W§—§;E(n5' -® (e

Here the solution for w, v, and W is_uniquely determined by the solu-
tion for F end G. Finally, F and G can be identified with F and
G in equa.tion (4c) and the provision f(x,z) =0 in (4c) and

F(0) = G(0) =

2008
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APPENDTX D

EXAMPLE OF DERTVATION OF EXPLICIT FORMS OF U, W, AND g2

The cases of obtaining the ordinary differential equations Por flows
assuming U = U(x,z) and W = W(x,z) are presented here because they
include all the variety of situations and complications that arise with
other possible assumptions on the nature of U and W. This assumption
is equivalent to the hypothesis that the first partial derivations of U
and W do not vanish identically. For convenience in the analysis the
seven different coefficients (see eq. (8)) are listed in the order of
their sppearance in equations (6) and (7):

@ ou/ax
@Waan
® oW/dz
@Ualngz
® wipE
® &°
@Ualzw

As JU/ox and OW/dz have been assumed to be nonzero, an o.d.e. condi-
tion for (O and will be '

U O 1ln W

etV T
Hence,
by
W==r(2)0 (p1)
Similarly, from @) and )
bz
W==Fy(x) U (p2)

Now, if by = bp, it follows from equations (D1) and (D2) that £(z)
and fp(x) are constents. Hence,

b
W = bsU 1 (D3)
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If by # bp, then from equations (D1) and (D2) and (D) and
U = £5(x)£)(2) (D4)
W =1,24(x)£,(z) (Ds)
Plf.:'?.' - First consider the case by #bp. Then by (D and ®
&° = b ri(x)21(z) (Ds)

As OW/ox = b, £3(x)£,(2) from (D5), it follows that, since OW/dx # O,
then

d in g2 _ T3(x)
16 R

(D7)
Similarly, OU/dz 4 O implies that
d 1n g2/dz = £3(z)/21(z) 4 O (D8)

Hence, from () and (@

f: fll )
-f—3 = bg -1;?- (D9)
3 3 '
or
L
bg
£L = bify (p10)
Ir -b6 = 1,
b7x
£, = bge (p11)
If bg £ 1,
b

The constant b,y represents only a displacement of the coordinate axis
and may be taken equal to zero without loss of generality.

200s
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Similarly, from 3 and (), and equations (D5) and (D6)

b 2z
£, = byge 13 (D13)
or
b
= 15
N £y =Dy, (D14)
3 .
0 From the various combinations ¢f fz and f4, the following forms
for U and W result:
nx _Ccz
U=me®; W=ae e )
U= w2l .y = aetXT
. ) (D15)
U= mP%%; = gt e
U=m%™ Y WeplT
< by = bg. - Now consider the remaining cese bj; = bz. If by =0, it

follows from equation (D3) that OW/dx = dW/dz = 0, which contradicts the
basic hypothesis. If by =1, W = bzU. Then from @ and @,

g-g =cy %g (D1s)
U= :Es(clx + 2z) (p17) -
W = bafs(cyx + z) (D18)

Treating (clx + z) as an independent varisble, f§ @ O implies that

f5 = ca(e1x + z) _ (Dp19)
U = cy(eqx + z) (D20)
W= 'bscz(clx + z) (D21)

If £ £0, then from @) and @

2
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Similerly, from @ and (),

2 2

Z

]

Therefore, from O and (@),

f5t5
clfs' = cgCy T (D24) §
S (Y]
and therefore,
= o745
21 = cfy (D25)
If ¢ =1, ' ' (D26)
cq(e.x + z) -
£y =ce O L (D28)
If o5 £1,
11
fe = [cg(czx + z) + 0] (p27)

As before, cjp can be taken equal to zero without loss of generality.
.The same result is obtained by use of ) and ) .

In summery, for by = 1 the Pollowing forms for U and W result:

U = me™eCF, W = aelXeCZ
) (D28)
U=m(ax + z) ; W = plax + z)8
The Tinal case to be considered is by #1. For by #1, g% cannot be

identically constent. If gz = k, a constant, then from end @ U
would have to be of the form U = d;x + hy(2z). Then from

equation (D3), bz [dlx + hy(z) ]b 1hl(z) = dp. But this requ.ires tha.t
either by =1 or (z) = 0¢ Neither case is admissible. Furthermore
neither %g dx mnor 0Ogfdz can be identically zero if the hypothesis
that the first partia.l derivatives of W and U do not vanish is not
to be violated. If for example g2 = g2(x), then from ® and @it
would follow that U = U(x), and hence aU/az = 0.
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From @ and @ the following form for U is determined:

d
U = (&2) hy(z) (p29)
Fronm @ and @ ’
W = (62) ny(x) (vs0)
However,
by
W = bzU (D3)
Therefore,
dg-P18s  b.h, b, (2)
(g?) i i A
hs(x)

Now if d, # bjd3, it follows at once that U and W can be expressed

as a product of a function of x and a function of z. Hence, equation
(D4) would hold, and the analysis would proceed accordingly as before.

If dy = byd3, then hp(z) and hz(x) must be constants end (@),
®, and equation (D29) give

a(e) 3 = 3g%/ox (v51)

From (3), (), and equation (D30),

356"t = 3g8/oz (D32)

If ;=2 or 4, =2, then g% = g(x) or g2 = g(z); and the hypothesis
is viclated. If d; = 1, then from equation (D31),

dlng’ 4 (33)
&% = hy(z)e > (p34)

Similarly, if d4 = 1, it follows from equation (D32) that

g? = hs(x)ed6z (D35)




26 NACA TN 3768

If dz # 1,2, integration of (D3l) yields

1
& = [(dsx + hg(z) (45 - 1) ] (D36)
If 4, = 1,2, integration of (D32) yields
g” = [{(agz + hy(x))(aq -1)] (D37)

Equations (D34), (D35), (D36), (D29), end (D30) require that U and W
be one of the forms already given in (D15) or (D28).

Thege forms thus obtained constitute all the possible solutions
arising from the initial assumptions.
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TABLE I. ~ SIMIDLAAITY BOLUTIONE IN STAYIONARY RECTANGULAR COORDINATES

Case I Casa II Cage III
T nollE meliE 19etXgOE
v peds golXg0s
1/2 Va2 ox\1/2 T 1/2 1/2 nxyoxy1/2 T\ 12
7 [relz.2)/45) r(#) - v(fi:) —(—,-'“ Y v("-—"r - s[;j;_?ﬁ - r(:—;) v(”" v = r(:—,) =y ﬁ)
] r a  w=m 1 i N P ——
Equation (6)- ml_(r')“ - !El - 1J- bFM o O T+ op(@'F' - 1) = bPM = 0 \(mo)l(r')“ - X - 1J bR = O
Equation (7) wr(Pig! - 1) - mg;E - BEM w0 op[(n')a - :EJ baM = O
Pr bl f mall
Frojestion of main = e(r—n)x+‘o xu_(!_’.pn_c .(n-ﬂ)tq.:o Zufsiy,
Irrotatiocnality ar w 0 me0 on = an
Linearity in u m w0 Linear mn =0
Lineerity in w Linsar op = G ge = 0
Boundary oond bions 0 0
on - - -
not achievable H o wm =0 83..’6" }“"‘“
8 tion of 6) | 8eparated - =0
FEP:;: gn ET; mepr =0 g’ém?m ] Doss nob apply
References and General solution of eq. (6) in refn, 1% |Case I with rotation of coordinate axis.|This is a case of rotated two-
commente and 4. Bq. (7) is solved in refs, 13 and 14, dimensional flow solved in refa,
If nwr, then P = G. awn, Fng gnd eq. (6) 1a com- 13 and 14 with b = mn + ao.

pletelr solved in refs. 15 and l4.
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TAELE I, - Qonbinosd. BIMILARITY SOLUTIONS IN STATIONARY RECTANGULAR OOORDINATES
Gane IV Case V Case VI
o m=? niax + ox)2
T pat plax + os}8
1\1/2 /2 /2 T-1\1/2 1/2 /2 n-114/2 12 /2
s | oV R - a ) RS o - | e e P ]
Equation (8) m[(ln)2 - 1]- a(er) B wem w0 [op(erd) B pmfow - 1) - 0P =0 a(emtop)[(#1)2 ~ 3] - (o+1)(antop) B~ - bPm = 0
Equetion (7) m{F1at - 1) - m{n+l) !;! -1IMm =0 m-[(uv)2 -':]- pl{r+l) 9-‘!'-'- - ba™ =0 F=a
e I .- g, c-Bri
Irpotationelity pr =0 mn = 0 7 ox = pa
Linsarity i1 u m=0 Linesr am = 0
Linsarity in w Linear pwo op =0
not a:g:avablenm [;g :'-on(ml) - D E - g }an = -op
PERE T )] o e - j oot
References and If *mn, Fui, This ip casa IV undar rotablcon of This case is gol oompletely in refo. 13 and 14
oormenbs Eef. 5: umO, m =bh, ceardinate axes, where b = (n+l){amtop).
. 81 n-O,I-b, N =24 (ref, g). Ref. 11: stagnation polnd flow: op =0, nm 1,
Ref. 71 u-D,--b,r-n(n 7). am = b,
RNef. 8t n=0 Ref, 113 symuetric onse: op = 0, n = 1/3,

Bat 12: T-ﬁ r-é.ﬂ'-g
o 3i --n,uﬁﬁiﬁliﬁl‘ﬁﬁﬁfu‘

‘oq 8).

Ref. 1l4: -(n+:|.)-n

Ref. 18: prlaps atagnation flow:
puw0,nwl, bmm

Blasius flow: pwn=o0, bwm,

Ra;l_‘. 161 p.'l.;.nl ptagnation flowt owp =m0, =],

gole ME VOVN
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TABLE I. - Conoluded. SIMILARITY SOLUTIONS IN STATIONARY RECTANGULAR COORDINATES
Omss VII Oane VIXI Oase IX
e 2 nz"o*" my-1
pab-lqo® pan-1yr
1/2 1/2 1
[rstxe)/ 5] y(ElE’,ﬂ.)‘ﬁ - ,(E%)W - '(':—'.:)m ,-(2!“.‘,".‘.“.‘.)1/9 - ,@9 - ot ,(ﬂ;"‘_‘)lﬂ - ,%)Vi - 'G'ﬁ 1/2
Luation (8) m[(l?' )5-!!:.1]+a(r.1)(ulrl-1)-n(r+1) ﬂF-wm-o m 12 - 1) -afned) !F-i-np(alr--!;'--:)-nr"- =q m[(r1)? - 3] <u({m1) !§1+
plr-1)(a1w1-3) -p(ri1) Y vpw w0
- P . aa N\ F.oova B8 V. o oadoa: ob o i POV L. o o fi..48 1 .- GG"
Equakion (7) ar {@7)" -1]-al{r+l) =i—+n\:r'u' - lf oW om0 epL\u')' - -:|.J+n\n-1]\r'u'-1} “M(rrkl) Sy <pUH @ O | pr @)%~ 3] -pixtl) S5+

r(n-1) #161-1) -afne1) B2 waw w0

e L ] ) o =
Irrotationality p(r-1) man =0 s w p(nel) = 0 u(r~1) = p{n-1} = 0
[Ansarity in u =g =0 z=0
Tdnsarity 1h o ama opuw o p=0
eonditions l}m-u-o mmap=0 nupwp
not a le T)|mn m a = m=op =0 mmpwl
e (e o 2z
- . [ T T L [ p— T o _n oame (1LY =ea inY
e R S iy et LT SL LR R - o e v R
Ifm::qo,(m.ou“sﬁlnud(?)u::gﬂlh“'or I "°'T"='u3'.::“.&f(7)u
sol in refn ad 14,

R .
Ref. 11: plane stagration poi.?h 1o
=0, ne]l, a=b, in e
« 13, p. T12 p'.l.m ltmt:l.nn rlou:
mwm, pm=o.,
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